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Abstract

The present numerical study deals with natural convection flow in a closed square cavity when the bottom wall is uniformly heated
and vertical wall(s) are linearly heated whereas the top wall is well insulated. Non-linear coupled PDEs governing the flow have been
solved by penalty finite element method with bi-quadratic rectangular elements. Numerical results are obtained for various values of
Rayleigh number (Ra) (103

6 Ra 6 105) and Prandtl number (Pr) (0.7 6 Pr 6 10). Results are presented in the form of streamlines, iso-
therm contours, local Nusselt number and the average Nusselt as a function of Rayleigh number.
� 2006 Published by Elsevier Ltd.
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1. Introduction

The phenomenon of natural convection in enclosures
has received considerable attention in recent years. This
attention is due to mainly because this phenomenon often
affects the thermal performance in many engineering and
science applications such as boilers, nuclear reactor sys-
tems, energy storage and conservation, fire control and
chemical, food and metallurgical industries.

Buoyancy driven flows are complex because of essential
coupling between the transport properties of flow and ther-
mal fields. In particular, internal flow problems are consid-
erably more complex than external ones. This is because at
large Rayleigh number (product of Prandtl and Grashof
numbers) classical boundary layer theory yields the simpli-
fications for external flow problems, namely, the region
exterior to the boundary layer is unaffected by the bound-
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ary layer. For confined natural convection, in contrast,
boundary layers form near the walls but the region exterior
to them in enclosed by the boundary layers form a core
region. Since the core is partially or fully encircled by the
boundary layers, the core flow is not readily determined
from the boundary conditions but depend on the boundary
layer, which, in turn is influenced by the core. The interac-
tions between the boundary layer and core constitute a
major complexity in the problem. In fact, the situation is
even more intricate because it often appears that more than
one global core flow is possible and flow sub-regions, such
as, cells and layers, may be embedded in the core. A liter-
ature survey shows that the comprehensive review of these
problems was made by Ostrach [1–3], Gebhart [4] and
Hoogendoorn [5] in which each emphasizes essentially var-
ious aspects of the subject.

Among the earlier studies, it may be noted that Fusegi
et al. [6], Lage and Bejan [7,8], and Xia and Murthy [9]
have made attempts to acquire a basic understanding of
natural convection flows and transfer characteristics in an
enclosure where one vertical wall is cooled and another
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Nomenclature

g acceleration due to gravity, m s�2

k thermal conductivity, W m�1 K�1

L side of the square cavity, m
n the normal direction on a cavity wall
N total number of nodes
Nu local Nusselt number
Nub local Nusselt number at the bottom wall
Nul local Nusselt number at the left wall
Nur local Nusselt number at the right wall
Nus local Nusselt number at the side wall
Nub average Nusselt number at the bottom wall
Nus average Nusselt number at the side wall
p pressure, Pa
P dimensionless fluid pressure
Pr Prandtl number
Ra Rayleigh number
T fluid temperature, K
Tc temperature of cold (right) wall, K
Th temperature of hot (bottom) wall, K
u x component of velocity
U x component of dimensionless velocity

v y component of velocity
V y component of dimensionless velocity
X dimensionless distance along x-coordinate
Y dimensionless distance along y-coordinate

Greek symbols

a thermal diffusivity, m2 s�1

b volume expansion coefficient, K�1

c penalty parameter
h dimensionless temperature
m kinematic viscosity, m2 s�1

q density, kg m�3

w stream function

Subscripts

b bottom wall
c cooled wall
h hot wall
l left wall
r right wall
s side wall
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one heated while the remaining top and bottom walls are
well insulated. November and Nansteel [10] and Valencia
and Frederick [11] have shown a specific interest to focus
on a natural convection within a rectangular enclosure
wherein a bottom heating and/or a top cooling are
involved. Studies on natural convection in a rectangular
enclosures heated from below and cooled along a single
side or both sides have been carried out by Ganzarolli
and Milanez [12]. Recently, Corcione [13] has studied a
natural convection in a air-filled rectangular enclosure
heated from below and cooled from above for a variety
of thermal boundary conditions at the side walls. Numeri-
cal results were reported for several values of both width-
to-height aspect ratio of enclosure and Rayleigh number.
Further, Sarris et al. [14] have also reported recently the
effect of sinusoidal top wall temperature variations in a nat-
ural convection within a square enclosure where the other
walls are insulated.

The aim of the present paper is to study the circulations,
temperature distributions within a square cavity and heat
transfer rate at the heated walls in terms of local and aver-
age Nusselt numbers as a function Rayleigh number when
the bottom wall is heated uniformly, left vertical wall is
heated linearly and right vertical wall is either linearly
heated or cooled. In any case, the top wall is well insulated.
In the case of cooled vertical wall, the finite discontinuity in
temperature distribution appear at the right edge of the
bottom wall. In the current study, Galerkin finite element
method with penalty parameter has been used to solve
the non-linear coupled partial differential equations for
flow and temperature field.
2. Mathematical formulation

Thermophysical properties of the fluid in the flow model
assumed to be constant except the density variations caus-
ing a body force term in the momentum equation. The
Boussinesq approximation is invoked for the fluid proper-
ties to relate density changes to temperature changes, and
to couple in this way the temperature field to the flow field.
The governing equations for the steady natural convection
flow using conservation of mass, momentum and energy
can be written as
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with boundary conditions

uðx; 0Þ ¼ uðx; LÞ ¼ uð0; yÞ ¼ uðL; yÞ ¼ 0;

vðx; 0Þ ¼ vðx; LÞ ¼ vð0; yÞ ¼ vðL; yÞ ¼ 0;
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here x and y are the distances measured along the horizon-
tal and vertical directions, respectively; u and v are the
velocity components in the x- and y-directions, respec-
tively, T denotes the temperature; p is the pressure and q
is the density; Th and Tc are the temperature at hot and
cold walls, respectively; L is the side of the square of cavity.

Using the following change of variables:

X ¼ x
L
; Y ¼ y

L
; U ¼ uL

a
; V ¼ vL

a
; h ¼ T � T c

T h � T c

;

P ¼ pL2

qa2
; Pr ¼ m

a
; Ra ¼ gbðT h � T cÞL3Pr

m2
: ð6Þ

The governing equations (1)–(4) reduce to non-dimensional
form as
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with the boundary conditions

UðX ; 0Þ ¼ UðX ; 1Þ ¼ Uð0; Y Þ ¼ Uð1; Y Þ ¼ 0;

V ðX ; 0Þ ¼ V ðX ; 1Þ ¼ V ð0; Y Þ ¼ V ð1; Y Þ ¼ 0;

hðX ; 0Þ ¼ 1;
oh
oY
ðX ; 1Þ ¼ 0;

hð0; Y Þ ¼ 1� Y ; hð1; Y Þ ¼ 1� Y or hð1; Y Þ ¼ 0: ð11Þ

Here X and Y are dimensionless coordinates varying along
horizontal and vertical directions, respectively; U and V are
dimensionless velocity components in the X- and Y-direc-
tions, respectively; h is the dimensionless temperature; P

is dimensionless pressure; Ra and Pr are Rayleigh and
Prandtl numbers, respectively.

3. Numerical method and choice of parameters

The momentum and energy balance equations (8)–(10)
are solved using the Galerkin finite element method. The
continuity equation (7) will be used as a constraint due
to mass conservation and this constraint may be used to
obtain the pressure distribution [15,16]. In order to solve
Eqs. (8)–(10), we use the penalty finite element method
where the pressure P is eliminated by a penalty parameter
c and the incompressibility criteria by Eq. (7) (see Reddy
[15]) which results in
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The continuity equation (7) is automatically satisfied for
large value of c. Typical values of c that yield consistent
solutions are 107 [15,16].
Using Eq. (12), the momentum balance equations (8)
and (9) reduce to
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The system of Eqs. (10), (13) and (14) with the boundary
conditions (11) is solved using Galerkin finite element
method. Since the solution procedure is explained in Ref.
[16], the detailed description is not included in this paper.
The numerical solutions are obtained in terms of velocity
components (U,V) and the stream function (w) is evaluated
using the relationship between the stream function (w) and
velocity components [17]. It may be noted that the positive
sign of w denotes anti-clockwise circulation and the clock-
wise circulation is represented by the negative sign of w.
The no-slip condition is valid at all boundaries as there is
no cross-flow, hence w = 0 is used for the boundaries.

The heat transfer coefficient in terms of the local Nusselt
number is defined by

Nu ¼ �oh
on

; ð15Þ

where n-denotes the normal direction on a plane. The local
Nusselt number at bottom wall (Nub) and at the side wall
(Nus) are evaluated for various wall boundary conditions
using the above definition. The average Nusselt numbers
at the bottom and side walls are computed as follows:

Nub ¼
Z 1

0

Nub dX and Nus ¼
Z 1

0

Nus dY : ð16Þ

The computational domain consists of 20 � 20 bi-qua-
dratic elements which correspond to 41 � 41 grid points.
The bi-quadratic elements smoothly capture the non-linear
variations of the field variables which are in contrast with
finite difference/finite volume solutions available in the lit-
erature [4,5]. In order to assess the accuracy of the numer-
ical procedure, the present algorithm based on the grid size
(41 � 41) for a square enclosure have been tested with the
work of Mallinson and Vahl Davis [18] for Ra = 103–105.
Computations have been carried out for various values of
Ra = 103–105 and Pr = 0.7–10 with uniformly heated bot-
tom wall, linearly heated left wall and linearly heated or
cooled right wall where the top wall is well insulated as
described in Section 4. Further, computations for Pr =
0.01, 0.1, 0.3 and 0.5 as well as Pr = 1, 100 and 1000 have
also been done but the results are not described here as no
specific different features have been observed. In case of
cooled right wall, the jump discontinuity of Dirichlet
type boundary condition at the corner point (see Fig. 1)



Fig. 1. Schematic diagram of the physical system.
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corresponds to computational singularity. In particular,
the singularity at the corner node of the bottom wall needs
special mention. The grid size dependent effect of the tem-
perature discontinuity at the corner points upon the local
Nusselt numbers tend to increase as the mesh spacing at
the corner is reduced. The difficulties are overcome by
assuming the average temperature of the adjacent walls
at the corner node and in the adjacent grid nodes at the
respective wall temperatures.

In the current investigation, Gaussian quadrature based
finite element method provides the smooth solutions at the
interior domain including the corner regions as evaluation
of residual depends on interior Gauss points and thus the
effect of corner point is less pronounced in the final solu-
tion. The present finite element approach offers special
advantage on evaluation of local Nusselt number at the
Fig. 2. Contour plots for linearly heated vertical walls h(0,Y) = h(1,Y) = 1 �
shown via negative and positive signs of stream functions, respectively.
bottom and side walls as the element basis functions are
used to evaluate the heat flux.

4. Results and discussion

4.1. Effects of Rayleigh number

4.1.1. Case I: Linearly heated side walls

Figs. 2–7 illustrate the stream function and isotherm
contours for various values of Ra = 103–105 and Pr =
0.7–10 with uniformly heated bottom wall and linearly
heated side walls where the top wall is well insulated. As
expected due to the linearly heated vertical walls and the
uniformly heated bottom wall, fluids rise up from the
middle portion of the bottom wall and flow down along
two vertical walls forming two symmetric rolls with clock-
wise and anti-clockwise rotations inside the cavity. At
Ra = 103, the magnitudes of stream functions are consider-
ably lower and the heat transfer is due to purely conduc-
tion. During conduction dominant heat transfer, the
temperature h 6 0.3 occur symmetrically near the side walls
of the enclosure. The other temperature contours with
h P 0.4 are smooth curves which span the entire enclosure
and they are generally symmetric with respect to the verti-
cal symmetric line. The temperature contours as indicated
in Fig. 2 remains invariant upto Ra < 104.

At Ra = 104, the circulation near the central regimes are
stronger and consequently, the temperature contour with
h = 0.5 starts getting shifted towards the side wall and
break into two symmetric contour lines (see Fig. 3). The
presence of significant convection is also exhibited in
Fig. 4 at Ra = 5 � 104 where temperature contour for
h = 0.6 starts getting deformed and pushed towards the
top plate. In addition, it may be noted that the secondary
circulations appear at the bottom corners for Ra =
5 � 104 due to convection as the lower half of the vertical
walls are hot and the hot fluids move towards the center
of the cavity. Consequently, at Ra = 7 � 104 the stronger
Y, with Pr = 0.7 and Ra = 103. Clockwise and anti-clockwise flows are



Fig. 3. Contour plots for linearly heated vertical walls h(0,Y) = h(1,Y) = 1 � Y, with Pr = 0.7 and Ra = 104. Clockwise and anti-clockwise flows are
shown via negative and positive signs of stream functions, respectively.

Fig. 4. Contour plots for linearly heated vertical walls h(0,Y) = h(1,Y) = 1 � Y, with Pr = 0.7 and Ra = 5 � 104. Clockwise and anti-clockwise flows are
shown via negative and positive signs of stream functions, respectively.

Fig. 5. Contour plots for linearly heated vertical walls h(0,Y) = h(1,Y) = 1 � Y, with Pr = 0.7 and Ra = 7 � 104. Clockwise and anti-clockwise flows are
shown via negative and positive signs of stream functions, respectively.
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Fig. 6. Contour plots for linearly heated vertical walls h(0,Y) = h(1,Y) = 1 � Y, with Pr = 0.7 and Ra = 105. Clockwise and anti-clockwise flows are
shown via negative and positive signs of stream functions, respectively.

Fig. 7. Contour plots for linearly heated vertical walls h(0,Y) = h(1,Y) = 1 � Y, with Pr = 10 and Ra = 105. Clockwise and anti-clockwise flows are
shown via negative and positive signs of stream functions, respectively.
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secondary circulations enhance the mixing process which
result in the rejoining of temperature contour h = 0.6
(Fig. 5). Further, at Ra = 105, the primary circulation
pushed towards the upper part of the cavity and due to
enhanced convection from the linear hot vertical wall, the
isotherm lines with greater values h > 0.5 covers almost
70% of the cavity (Fig. 7). It is interesting to observe that
due to two pairs of symmetric circulations, ‘hot’ and ‘cold’
fluid regimes appear distinctly across the temperature con-
tour h = 0.6. In contrast, at Ra = 105 for Pr = 10, the
strength of secondary circulations appearing at corners of
bottom wall is less as compared for Pr = 0.7 case due to
the viscus force dominating the buoyancy force for
Pr = 10 (see Fig. 7). As the strength of the primary circula-
tion increases for Pr = 10 case, the isotherm lines with tem-
perature contours h > 0.5 covers approximately 90% of
cavity. The significant effect of convective heat transfer will
be illustrated later via average Nusselt number vs Rayleigh
number plot.

4.1.2. Case II: Linearly heated left wall with cooled right

wall

Figs. 8–11 illustrate the stream function and isotherm
contours for various values of Ra = 103–105 and Pr =
0.7–10 with uniformly heated bottom wall, cooled right
wall and the left wall is linearly heated. As expected due
to linearly heated left wall, fluids rise up along the side of
left wall and flow down along the cooled right wall forming
a roll with clockwise rotation inside the cavity. As Ra

increase from 103 to 105, the value of stream function
increases i.e., the flow rate increases. At the left corner of
the top wall, secondary circulation formed due to convec-
tion, and the hot fluids move towards the left corner of
the cavity. Fig. 8 shows that the isotherm lines change its



Fig. 10. Contour plots for linearly heated left vertical wall, h(0,Y) = 1 � Y and cooled right vertical wall, h(1,Y) = 0, with Pr = 0.7 and Ra = 105.
Clockwise and anti-clockwise flows are shown via negative and positive signs of stream functions, respectively.

Fig. 8. Contour plots for linearly heated left vertical wall, h(0,Y) = 1 � Y and cooled right vertical wall, h(1,Y) = 0, with Pr = 0.7 and Ra = 103.
Clockwise and anti-clockwise flows are shown via negative and positive signs of stream functions, respectively.

Fig. 9. Contour plots for linearly heated left vertical wall, h(0,Y) = 1 � Y and cooled right vertical wall, h(1,Y) = 0, with Pr = 0.7 and Ra = 104.
Clockwise and anti-clockwise flows are shown via negative and positive signs of stream functions, respectively.
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Fig. 11. Contour plots for linearly heated left vertical wall, h(0,Y) = 1 � Y and cooled right vertical wall, h(1,Y) = 0, with Pr = 10 and Ra = 105.
Clockwise and anti-clockwise flows are shown via negative and positive signs of stream functions, respectively.

Fig. 12. Variation of local Nusselt number with distance at (a) bottom
wall and (b) side wall for linearly heated side walls.

M. Sathiyamoorthy et al. / International Journal of Heat and Mass Transfer 50 (2007) 766–775 773
value smoothly from hot vertical wall to cold vertical wall
for Ra = 103.

At Ra = 104 the circulations are stronger and conse-
quently, the temperature contour with h = 0.5 pushed
towards the right corner of top wall (see Fig. 9). At Ra =
105 in Figs. 10 and 11 due to enhanced convection from
the hot left wall to the cold right wall, the isotherm lines with
greater values h > 0.5 covers around 50% of the cavity for
Pr = 0.7 and Pr = 10. In addition for Pr = 10, the strength
of secondary circulation increases.

4.2. Heat transfer rates: local and average Nusselt numbers

4.2.1. Case I: Linearly heated side walls

Fig. 12(a) and (b) display the effects of Ra and Pr on
the local Nusselt numbers at the bottom and side walls
(Nub,Nus) for linearly heated side walls. At the edges of
the bottom wall, the heat transfer rate Nub, is 1 due to
the linearly heated side walls (see Fig. 12(a)). For Ra =
104, the heat transfer rate is sinusoidal type with its mini-
mum value at the center of the bottom wall due to the
higher values of stream function (i.e., flow rate) with two
symmetric circulations about the vertical symmetric line
at the center of the bottom wall. Similar situation of sinu-
soidal heat transfer rate prevails at Ra = 105 and Pr = 10.
In contrast, for Ra = 105 and Pr = 0.7, the heat transfer
rate is maximum at center of the bottom wall due to the
presence of strong secondary circulations leading to a high
temperature gradient at the center of the bottom wall.

In Fig. 12(b), the heat transfer rate at the bottom-edge of
side wall is zero due to uniformly heated bottom wall and
the heat transfer rate is maximum at the top-edge of side
wall due to insulated top wall. For Ra = 103, Pr = 0.7,
due to weak circulations, the heat transfer rate is almost
zero upto Y = 0.7 and Nus = 3 at Y = 1 whereas at
Ra = 104, the heat transfer rate Nus = 4 at Y = 1 due to
stronger circulations. For Ra = 105, due to the presence of
a pair of symmetric secondary circulated cells with clock-
wise and anti-clockwise rotations, the heat transfer rate is
oscillatory in nature in the lower half of the side walls and
the increasing trend of heat transfer rate is observed in the
upper half of the side walls with Nus = 6 and Nus = 8 at
Y = 1 corresponding to Pr = 0.7 and Pr = 10, respectively.

The overall effects upon the heat transfer rates are dis-
played for linearly heated side walls in Fig. 14(a) and (b),
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where the distributions of the average Nusselt number of
bottom wall and side walls, respectively, are plotted vs
the Rayleigh number. It is observed that the average
Nusselt number is almost constant upto Ra = 104 due to
dominant heat conduction mode and smoothly increases
as Rayleigh number increases further. It is interesting to
note that the smoothness breaks at Ra = 7 � 104 and
Pr = 0.7 for both bottom and side walls as the oppositely
rotated secondary cells becomes prominent. The smoothly
increasing trend of average Nusselt numbers is observed
for Pr = 10 due to insignificant secondary cells.

4.2.2. Case II: Linearly heated left wall with cooled right

wall
Fig. 13(a) and (b) display the effects of Ra and Pr on

local Nusselt numbers at the bottom and side walls
(Nub,Nul,Nur) for linearly heated left wall and cooled right
wall. The heat transfer rate Nub is 0 at the left-edge of the
bottom wall due to the linearly heated left wall and it is
maximum at the right-edge of the bottom wall due to the
cooled right wall (see Fig. 13(a)). As Ra increases from
103 to 105, the heat transfer rate increases from the left-
edge to the right-edge of the bottom wall.
Fig. 13. Variation of local Nusselt number with distance at (a) bottom
wall and (b) left and right walls for linearly heated left wall and cooled
right wall.

Fig. 14. Variation of average Nusselt number with Rayleigh number for
linearly heated side walls [(a) and (b)] and linearly heated left wall and
cooled right wall [(c) and (d)] with Pr = 0.7 (—) and Pr = 10 (- - -). The
inset of (d) shows plot of average Nusselt number vs Rayleigh number for
right wall.
In Fig. 13(b), the heat transfer rate (Nul) at the bottom
edge of the left wall is zero due to the uniformly heated bot-
tom wall and linearly heated left wall and its magnitude
increases from the bottom edge to the top edge of the left
wall. At Ra = 105, local Nusselt number (Nul) exhibits
oscillatory behavior due to the presence of secondary circu-
lation near the top edge of the left wall. The inset plot
shows the local Nusselt number (Nur) distribution for the
right wall. For all values of Ra and Pr, it is observed that
Nur is maximum at the bottom edge and decreases towards
the top edge.

The overall effects of Ra and Pr on the average Nusselt
numbers at the bottom and side walls are displayed in
Fig. 14(c) and (d). It is observed that the average Nusselt
numbers smoothly increase as Rayleigh number increases
except for Pr = 10 at the left wall due to the presence of
strong secondary cell. In contrast, the average Nusselt
numbers at side walls were found to be increased with Pra-
ndtl number as discussed for case I.

5. Conclusions

The influence of linearly heated vertical wall(s) with
uniformly heated bottom wall on flow and heat transfer
characteristics due to natural convection within a square
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enclosure has been studied in the present investigation. The
penalty finite element method helps to obtain smooth solu-
tions in terms of stream function and isotherm contours for
a range of Pr and Ra. In case of linearly heated side walls,
for large values of Ra P 7 � 104, the presence of a pair of
symmetric strong secondary circulations enhances the local
mixing process in the lower half of the cavity and the local
Nusselt numbers (Nus) are found to be oscillating in nature
at the lower half of the side walls with an usual increasing
trend in the upper half of the side walls due to the insulated
top wall. Moreover, the average Nusselt number is almost
constant upto Ra = 104 due to dominant heat conduction
mode, and smoothly increases as Rayleigh number
increases further but the smoothness breaks at Ra = 7 �
104 for Pr = 0.7 for both bottom and side walls as the
oppositely rotating side walls become prominent. In con-
trast for the case of linearly heated left wall and cooled
right wall, at Ra = 105, local Nusselt number at the left
wall exhibits oscillatory behavior due to the presence of
secondary circulation near the top edge of the left wall.
Further, the average Nusselt numbers smoothly increase
as Rayleigh number increases with an exception for
Pr = 10 at the left wall due to the presence of strong sec-
ondary cell near the top edge of the left wall.
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